
Experience report on Conformance Tests for CORBA ORBs

M. Li, A. Rennoch, I. Schieferdecker,
D. Witaszek, 0. Halabi, A. Vouffo, and A. Yin

FOKUS, Fraunhofer Institute for Open Communication Systems

Kaiserin-Augusta-Allee 3 1, D- 10589 Berlin, Germany
phone: +49 30 3463-7000, fax: +49 30 3463-8000,

email: corval2@fokus.fhg.de
www. fokus . fhg .deltip

Abstract

Middleware platforms are in wide spread use for
distributed systems. Their quality is key to the stability and
interoperability in multi-vendor heterogeneous
environments. It is the aim of the EC ISTproject CORVAL2
to enhance the techniques used to validate the
conformance of OMG’s CORBA technology. This paper
investigates testability aspects of CORBA ORBs and
considers CORBA based systems both from a theoretical
and practical view on testing. Test strategies are proposed
and a conformance test suite presented.

Keywords: CORBA, Conformance testing, Testability,
Static and dynamic analysis, Testing tools.

1 Introduction

Distributed software applications cover a broad range of
user domains: e-commerce and co-operative working are
only some catchwords. It is middleware, which enables
applications to be independent from different operating
systems, languages, data communication, databases, 110
interfaces or heterogeneous computer hardware.
Obviously, the quality of the programming platform is a
key issue in software development. An increasing number
of vendors of middleware together with a huge number of
applications arise the serious question on interoperability.
In order to avoid a blind one-to-one interoperability testing
of each pairs of server/customer configuration, it is

proposed to follow the methodological approach of
conformance testing. Conformance to standard
specifications ensures interoperability and portability
between products of different vendors, what is essential for
the openness of distributed systems.

A well established programming platform is the
Common Object Request Broker Architecture (CORBA)
standardized by the Object Management Group (OMG)
software consortium. CORBA allows software components
to communicate with each other independent from their
location and their details of implementation such as
programming language and operating system. The
communication between software components follows a
clientkerver paradigm. The interaction between clients and
servers is based on the Object Request Broker (ORB).

In this paper we discuss the technical approach to
conformance testing of CORBA v2.3 ORBs [19]. The
specification consists of the CORBA Core, CORBA
Interoperability and CORBA Interworking’ parts. The
CORBA Core defines the Interface Definition Language
(IDL) and the Application Programming Interface (API)
used by CORBA applications. IDL allows for the
description of IT services and applications in a language
and implementation-independent way. Different
programming language mappings for IDL are provided.
Conformance to the IDL and API in a selected
programming language ensures the portability of an
application on different CORBA implementations. In

1. CORBA Interworking is intended for the communication between
CORBA and Microsoft’s COM systems and is not considered in this
paper.

0-7695-1287-9/01 $17.00 0 2001 IEEE 173

mailto:corval2@fokus.fhg.de

addition to the portability, the CORBA Interoperability
defines protocols to support the interoperability between
CORBA ORBS (Object Request Brokers). Mandatory for
a CORBA conformant ORB is the combination of the
General Inter-ORB Protocol (GIOP) and its specialization
with the transport protocol TCP, the Internet Inter-ORB
Protocol (IIOP).

The paper considers the testability concept and
approaches to test the different requirements of the
CORBA core specifications. It is structured as follows: In
Section 2 the testing target, i.e. the special nature and
requirements for CORBA ORBs, is presented. An
implementation oriented view on testability is given in
Section 3. This section informs on the selected test
implementation strategies, too. A short overview on the
developed conformance test suite for CORBA v2.3 ORBs
is given in Section 4. Finally, conclusions for CORBA test
specifications and test ORB interoperability protocols are
drawn.

2 The testing target: CORBA ORBs

The Object Management Group (OMG) was formed to
provide an architectural framework together with detailed
specifications to “drive the industry towards
interoperable, reusable, portable software components
based on standard object-oriented interfaces”[191. The
key component of the framework is the Common Object
Request Broker Architecture (CORBA). It supports a
distribution transparcnt communication bctween clicnts
and server objects in a heterogeneous environment. Since
its introduction, the architccture and spccification of
CORBA have been improved by several revisions. The
first specification and implementation were available at
the beginning uf 90’s. The Interface Definition Language
(IDL) and some basic CORBA interfaces were defined
there. The revision 2.0 published in 1995 contains for the
first time the interoperability protocols GIOP and IIOP.
This was significant for the wide acceptance of CORBA,
because GIOP and IIOP ensure interworking between
CORBA-based systems supplied by different vendors. In
the subsequent revisions 2.1 and 2.2, an interface for
dynamic management of Any values (DynAny) and the
concept of the Portable Object Adaptor (POA) were
added. The POA extends and replaces the Basic Object
Adaptor (BOA). POA was further improved in the 2.3
revision that was standardized in 1999. New concepts
included in this revision are Value Type and Abstract
Interfaces. In addition, the number of supported languages
has been increased continuously. Among the already
covered languages are C, C++, Java and Smalltalk.

While CORBA is maturing and more and more

CORBA implementations and CORBA-based products
emerge, the attention on interoperability and portability
increases. The key of interoperability and portability is the
conformance to standard specifications. CORBA
specifications place conformance requirements in terms of
Compliance Points. One compliance point is, for example,
the whole CORBA Core that contains basic interfaces used
by CORBA-based applications.

A Means of testing (MOT) is needed to evaluate the
interoperability and portability. It must be vendor
independent and it should provide reproducible evaluation
results. The EC IST project CORVAL2 develops and
provides such a MOT. A major input was the CORBA
Verification Suite (VSOrb) [23]. VSOrb is an extensive test
suite for the C and C++ mappings of the CORBA 2.1 (abbr.
as v2.1 in the following) specification. It has been applied
to different ORB implementations. VSOrb makes use of
the Assertion Definition Language (ADL[22]) Translation
System and Test Environment Toolkit (TET[24]) in order
to automate the creation and execution of tests. A further
input to the v2.3 test development origins from a recent
work on testing techniques for CORBA-based systems. It
resides on the Conformance Testing Methodology and
Framework (CTMF) [171 of ITU-T/JSO. CTMF is widely
used in the industry for testing various communication
protocols. Its usability for object-oriented systems is
shown in [131. A test management environment supporting
CTMF-based test systems is also part of the input. It covers
means for test management, including setup and control of
tcsts, as well as test reporting.

The testability of object-oriented client/server systems
such as CORBA systems depend on different aspects
covering general concepts of distributed object technology,
the interface architecture and specification of objects and
components, and the specific realization of
implementations based on different programming
languages.

The analysis has been structured according to the major
implementation aspects of a CORBA ORB, i.e. syntax and
semantics of IDL dcfinitions, syntax and semantics of the
API, and the definition of GIOP/IIOP (see also Figure 1).

The testability analysis of CORBA systems adopts this
structuring principles, i.e. the major conformance
requirements according to the product profile [20]. It
distinguishes the following system aspects

language mapping
mapping of interface descriptions (i.e. with an IDL
compiler) to programming languages (e .g . C++ and
Java) and generated interfaces (i.e. IDL stubs/
skeletons)

174

(;lOP and l lOP Protocols

Figure 1 : Different system aspects

operation based interface
API (e.g. ORB interface, DII, DSI, object adapter,
interface repository)2
CORBA services (e.g. name service)
message based interface
CORBA interoperability between different ORB core
implementations: GIOPDIOP

In the following we discuss more detailed the
individual aspects.

2.1 Language mapping

Tests on language mappings concern in fact the test of
compilers (and interpreters). Compiler tests cover both
static aspects on the error-free syntax of the generated
code and dynamic aspects on the correct behavior of this
code. It has to be noted that different compilers may
conform to a language mapping specification, by
producing different code with equivalent behaviour. A
language mapping compiler differs from classical
programming language compilers, which .$ranslate a
programming test to machine code. Testing e.g. an IDL
compiler has the following advantages in comparison to
the latter one:

it produces an output which can easily be inspected
(files with programming language code)
the input language specification (IDL) does not
contain any behavior (e.g. state transition)

Thus, language mapping tests are controllable (e.g.
IDL input) and observable (by the resulting files with
programming language code). A core problem is how to
analyze the results and how to assign a test verdict, i.e.

2. Note: Figure 1 : does not include all operation based interfaces.
Further interfaces exist between the client or servant and the ORB
core, interface repository etc.

how to compare the output with the specification of the
language mapping, especially when taking into account the
various possible mappings for a given language.

Additionally, when testing a code in programming
languages, like C++ and Java, the object-oriented
paradigm has to be considered. In the context of object-
oriented programming, special emphasis is needed for
inheritance, polymorphism, late binding, and
encapsulation [4].

2.2 Operation based interface

Requirements on the testability of CORBA
specifications for operation based interfaces address basic
requirements such as existence and completeness of
provided operations, but also further desirable specific,
testing oriented details:

the prerequisites for operations and parameters,
the dependencies between operations under test and
other operations/parameters,
the dependencies between parameters under test and
operationdother parameters,
sample structures proposed for testing of data types,
sample values or value ranges proposed for testing of
parameters, and
sample parameter combinations proposed for testing
for operations under test.

The fault model should consider both, valid and invalid
values, structures, operation orders etc. The test approach
can follow a typical 'service testing' approach, i.e. a
classical requestheply (incl. exceptions) communication at
the interface under test. The controllability of tests for
operation based interfaces results from the underlying
client-server principle, by which operation under tests can
be invoked from the test system.' The observability is
restricted to the direct reactions on the operation
invocation (i.e. reply or exceptions). Internals that results
from an operation invocation are typically not observable.

2.3 Message based interface

The requirements for testing a message based interface
with an underlying protocol specification address five
distinct parts to be considered [7] :

the service that is provided by the protocol,
the assumption about the environment in which the
protocol is executed,
the vocabulary of messages used to implement the
protocol,

175

the format of each message in the vocabulary, and
the procedure rules guarding the consistency of
message exchanges.

Only the direct reactions are observable but not
internals that are caused by incoming messages. The fault
model of message related system aspects corresponds to
classical conformance testing approaches[171, which
focuses on the identification of wrong messages, which
are caused by coding errors, faulty protocol data or
inconsistent behavior with respect to the protocol rules.

3 Test strategies for ORB
implementations

AS seen from the previous sections the testability of
complex systems like CORBA is depending on a series of
requirements on the system’s model, specification and
implementation details. This section discusses testable
features for CORBA and proposes appropriate test
strategies and approaches.

3.1 Language mapping

OMG-IDL has a formal syntax and not formal but well
understood semantics. The target language is a
programming language with defined syntax and
semantics. The mapping describes how the IDL syntax
and semantics can be reflected in the syntax and semantics
of a given programming language (considering available
concepts in the used version of the programming
language). The mapping gives to the ORB vendors (to a
certain degree) freedom for the form of the resulting code.

The IDL compiler is testable in the sense that it can be
assessed (using different IDL input) and observed (if
output in readable form is available). Due to the informal
character of the mapping description and the variety of
possible mappings, the full automation of the test case
generation and result analysis is practically not possible.
Therefore semi-automated generation together with
manual addition is advisable.

For the development of language mapping tests we
performed the following steps to achieve a representative
set of test cases:

define a set of IDL specifications to be tested,
based on the mapping rules, the features of the target
programming code should be specified manually,
compare the output obtained from the test execution
with the expected output, and
assign a verdict.

Test model

In the context of compiler tests, there is no complete test
theory available which solves the language mapping
problem for IDL. Nevertheless, there is some general work
on compiler tests [3]: language mapping (i.e. compiler)
tests are black box tests, since there are no possibilities to
inspect a compiler, but only to observe and run the output
of the compiler for a given input specification. Following
this viewpoint the output of the compiler has to be verified
according to the input. With respect to the static aspects,
the output of the “compiler under test” can be validated by
the programming language compiler of the target
language.

An illustration on the general process and the
relationship of the involved documents in given in Figure
2. The IUT is an IDL compiler under test. The Test
Sequence Generation has to produce (on a base of the IDL
Grammar) a set of IDL test sequences covering all IDL
constructs used in all possible context (or a representative
subset of it). An output of the Test Sequence Generation is
a (set of) specification(s) in IDL which will be used as an
input for the IUT (these are the test cases). The IUT
produces its output in a target programming language, for
which the mapping rules are defined.

The following activities produce means for the test
result analysis: The mapping rules are an input to Test
Program Generation, which has to produce test programs.
Further input is the IDL grammar and the test input in order
to generate the test programs only for constructs (and their
values, if any) which are currently used to test the IUT. For
each IDL construct, the Test Program Generation produces
test programs (including the expected results and verdict
assignments). The test programs and the compiler output
are used by a Test Result Analysis to compare them, assign
a result and produce a test report.

The developed test cases (i.e. test programs) can
become part of a tool for an automatic test case execution
and verdict assignment for IDL compiler test. Test
specifications for compiler tests (i.e. the test input) can be
generated from an input language syntax to achieve a
nearly complete coverage of the language constructs. The
test programs cannot by produced automatically: the
mapping rules for IDL to a programming language are
defined in a form of examples and many “equivalent”
mappings are possible.

In CORBA it is due to the unavailability (i.e. there is no
clear access point for the test system) of a well defined
interface between the generated interface code (stubs and
skeletons) on one side and any API on the ORB side, that
the behavior can be tested only by a combined test of two
corresponding interface programs or substitutes.

176

I I d J/W Analysis

Test Programs

Verdict Assignment

Figure 2: The development of IDL compiler
conformance tests

3.2 Operation based interfaces

The use of IDL for interface definitions gives a clear
specification for the operation signatures only and leaves
open the operation semantics etc. Furthermore, proposals
for testing (sample parameter structures, values and
combinations) are missing in the CORBA specification.
With the definition of the mapping rules of IDL to
programming languages like C++, guidance is given on
how to implement CORBA applications but also on the
test system implementation. In particular, concrete
information on the interface characteristics is given,
which can be tested. It defines not only the proposed
mapping, but also illegal application examples,
possibilities, exceptions etc. Unfortunately, the majority
of this information is informal only.

Test model

The question on generating operation based interface
tests targets three major aspects, namely the definition of
the ordering, the test pattern, and the test values. The
ordering aspects covers both, the order of interfaces under
test and the test ordering of interface features (e.g. basic
types, operations, exceptions,...). Since there is less
economical pressure (time and costs) to optimize a test
campaign, there are no constraints on the order of tests on
the static aspects of the API. However, any inheritance
structure should be considered in order not to perform
meaningless test cases, i.e. not to execute tests which
depend on test which already failed. The same applies for
the relationship between operations at different interfaces.

Test patterns, i.e. generic and universal test case
structures, have been used to automate the test
development process. Sample test patterns on the static
tests have been described in [15]. The test body of
semantic tests for operations are simpler and could be
expressed using a case distinction for normal and
exceptional behavior. This is already supported by some
test tools like ADL[22].

More efforts are needed with respect to the selection of
test values. Appropriate test data filtering techniques [1 11
could express the requirements and allow the translation
into the test programming code. Unfortunately,
developments in this research areas are still at the
beginning, so that a lot of manual work is needed.

3.3 Message based interfaces

As explained in the previous section, the CORBA
message based interfaces are not precisely defined. For
example, the behavior of a client when receiving an
unexpected message is not clear. As formal descriptions of
CORBA interoperability protocols are not available, again
manual test development is used mainly.

Test model
Testing of CORBA interoperability protocols follows

classical OS1 protocol conformance testing [171. Testing
the server side ORB is straightforward, since the server
application is on top of the IUT (ORB under test), which
can be implemented directly based on the server side ORB
API. The client behavior can be a part of the means of
testing (e.g. realized by a TTCN based test program).

Testing the client side requires an additional
information exchange: after starting a client, the
application must send a request to its ORB (under test) in
order to enforce it to send an GIOP request to the server
side test component. After this request, the server test
component will send a reply message.

Another issue is that the GIOP/IIOP communication
protocol does not support status requests. Thus, there is no
possibility to verify whether the client ORB (under test)
has accepted and transmitted any reply to the client
application, which has been received from the server side.
That means that the client application (or any other
component) may require some suitable means to check the
client ORB (under test) status. Further, the client
application must support the server side test component,
which gives the final verdict, i.e. the client application has
to send back any received reply (using some request
message). To avoid a deadlock, a timer must be introduced

171

under the control of the client application and a
corresponding signal for the server tester side in case of a
time-out has to be send to the server side.

4 The Conformance Test Suite for
CORBA ORBS

The conformance test suite for CORBA ~ 2 . 3 ~ has been
developed on the basis of the analysis presented above.
Tests for language mappings are covered by IDL tests to
verify the syntactic aspects of the code generated by the
ORB’s IDL compiler and by Stub and skeleton tests - to
verify the runtime behavior of the code generated by the
ORB’s IDL compiler. Tests for operation based interfaces
are contained in API declaration tests to verify the
declarations of the CORBA APIs (e.g. in form of C++
header files) provided with the ORB implementation and
in API behavior tests to verify the behavior of the
CORBA APIs provided with the ORB implementation.
Message based interfaces are tested with GIOPAIOP
tests to verify the ORB’s capability in terms of the syntax
of GIOP messages and their exchange over IIOP. In the
following, details on structure and techniques used by
each test group are given.

4.1 IDL Compiler Test (IDL)

The tests are structured into test groups, test sub-
groups and test case groups according to the logical
structure of the language mapping. Each test case group
consists of an IDL specification and a set of test cases,
whereas each test case is a list of features to be tested.
Tests for the new features of CORBA v2.3, e.g. value type,
abstract value type and abstract interface, have been
developed. There are about 400 IDL test cases available.

The test suite is executed with the TET[24] testing
environment with a Java based CUI in the professional
edition. The tests for C++ as target language are based on
compiler error checks: for each test sub-group an IDL file
is used as input to the IDL compiler under test. The
generated code is then included in a codelet file and
compiled using a target language compiler (e.g. a GNU
C++ compiler). The assigned verdict depends on the
success of the compilation.

4.2 IDL Stub and Skeleton Test (SII)

The tests are separated into two test groups for stubs and
skeletons, respectively. Subgroups for tests on
substitutability of value parameters and on passing
instances of different valuebox types as parameters are
defined. The stub test group and the skeleton test group
contain appr. 380 test cases.

The test notation TTCN (Tree and Tabular Combined
Notation[171) in combination with the TTCNKORBA
gateway TCgate[9] is used. The test suite can be executed
using command-line mode or using TTman[141.

4.3 API Declaration Tests (DECL)

The structure of the declaration tests corresponds to the
CORBA specifications. From the CORBA v2.1 test suite
[23], a number of tests have been updated according to
modifications of parameter types, structure extensions etc.

3. The conformance test suite for the CORBA v2.3 was released in
Jan. 2001 and can be downloaded at http://www.opengroup.org/
corval2/download.htm1

178

http://www.opengroup.org

Client-side tests Server -side tests

The test notation TTCN[171 is used for the definition of
GIOP/IIOP tests. The test suite can be executed using
command-line mode or using TTman[141.

For the C++ declaration tests, a pattern-based approach
is used. The tests use a compiler-error check, like the IDL
tests, and are executed with TET[24]. There are about
I240 API declaration tests.

4.6 Java ORBS
4.4 API Behavior Test (API)

In CORVAL2, a separate test suite is under
development, which offers conformance tests for an ORB
implementation with Java based interfaces. The test suite
structure has been kept but some of the test techniques are
changed. A new approach has been selected with respect to
the static syntax tests, i.e. IDL compiler and API
declaration tests. In Java, they are based on a comparison
of Java classes with Java classes of a reference
implementation. Here, the standard reflection package in
Java is used. API behaviour tests are implemented with the
new version ADL 2.0, which supports testing of object-
oriented Java interfaces, too. In case of TTCN based tests,
the TTCN-based test components could be reused, but the
client and server emulation have been ported to Java.

The tests cover operations and attributes of the
considered APIs. There are available 470 test cases.

4.7 General remarks

Test development

Due to the variety of aspects of the CORBA
conformance test several technics has been applied. Some
test has been written in target programming language,
some in an abstract way using ADL and TTCN. This had
an impact on the test development time.

The test written in a programming language (C++) had
to be totally rewritten, when mapping to Java has been
considered.

For the tests developed in TTCN, only small parts coded
in C++ had to be ported to Java. For the stub and skeleton
tests, a TCgate[9] written in C++ could be reused for Java
ORB: the tester contains a reference ORB (C++), which
communicates via GIOP/IIOP with a tested (Java) ORB.

The tests are defined using the Assertion Definition
Language (ADL) including the Test Data Description
Language (TDD) [22]. The tests are executed with
TET[24].

4.5 GIOP/IIOP Test

The GIOP tests are divided into server site and client
side tests. Each group contains another three sub-groups
on message ordering, on Common Data Representation
(CDR) and on pseudo object types. The tests contain 360
test cases for different GIOP versions (1 .O, 1.1 and 1.2).

179

However, to develop a test for CORBA in TTCN, a
mapping of IDL (CORBA) types to programming
language types has to be provided and made available
during the execution of the tests. Additionally, the
gateway TCgate is needed to transform the TTCN
messages to CORBA calls. Thus, the usage of TTCN
consumed more time for test development at the
beginning, but required less effort when porting to Java.

ADL is more abstract then a programming language,
but uses many constructs from the programming language
- there exists dialects of ADL for particular languages.
Therefore, only some parts of tests developed for testing
C++ ORB could be reused to test Java ORBs.

The CORBA specification is informal, what makes it
more difficult to develop a list of test objectives.
Misunderstandings on the standard or insufficient
information in the standard led sometimes to the need for
clarification with ORB vendors and the OMG.

Test campaign

To test different aspects of CORBA ORBs, suitable
methods have been developed and applied, which provide
means and tools for test execution. This led to a variety of
methods and tools, which can be used for ORB
conformance tests. Some of the methods (like IDL
compiler test, API declaration test) depend on the target
programming language and e.g. differ for C++ and Java
tests.

At the beginning of the project, the user which
performs a test campaign, had to deal with two test
management tools (two GUIs), one for TTCN tests and
one for other tests, and different test report formats. Both
GUIs have been compared and it has been decided to run
the TET test under the control of TTman, too. Now, a user
is able to run the complete test suite with one CUI only.
Since execution of the large number of tests and the
analysis of the results is very time consuming, additional
utilities for automated test setup (e.g. test scripting) and
reporting (e.g. test result summary) are provided.

It is recommended to start a test campaign with the
tests to check the syntax, like the IDL compiler and API
declaration tests, because already in this phase some
missing/wrong code can easily be discovered.

5 Conclusions

Testability of complex systems is a key aspect for the
quality assurance of such systems. According to [8], an
ideal development of object-oriented systems is iterative
and incremental. It must be accompanied by short code/
test cycles to allow iterative and incremental test planning,

design and execution. This approach supports the
testability of a system under development, but cannot be
taken in all cases (e.g. if larger subsystems have to be
integrated).

This paper gives an insight into some theoretical and
practical questions on testability of CORBA systems,
covering CORBA system aspects on language mappings,
operation based and message based interfaces. In addition,
considerations on practical problems with respect to test
implementation and test derivation are included.

The C++ test suite presented in this paper comprises
more than 2500 tests and have been applied to different
ORB implementations, i.e. Orbacus (IONA), Interstage
(Fujitsu) and MICO (Open Source). Due to its volume and
coverage, the test suite helps to discover and correct
specific failures in the ORBs. The successful application of
this conformance test suite is a definitive step towards an
interoperable CORBA infrastructure. In comparison to
usual CORBA application test tools, i t is the broad range
of details which enables the system implementor not only
to know about possible failures within a product but also to
get detailed knowledge on the specific error type and
location.

System specifications, informal and formal parts, can be
used to establish a catalogue of fixed test objectives.
However, they do not contain sufficient information
needed to develop unique tests. For example, the variety of
system parameters may lead to a wide range of possible
test instantiations and implementations. Therefore, there is
a need to provide clear and unambiguous system
specification and to enhance them with test related
information. In the context of language mapping system
aspects, an informal approach for test generation has to be
taken since in CORBA developers are free in the design
and realization of their implementations. Also, the review
of available abstract interface specifications leads to the
understanding that none of the currently used description
techniques covers the full information required for
testability, i.e. sufficient specification of data and dynamic
behavior. However, there is an approach (the reference
point facet approach [9]) for refining the specification of
ODP reference point specifications. This will be used to
enhance the specification and testability of object-oriented
interfaces. Further, the specification of test data needs to be
restricted to a practical scope using some filtering
specification techniques [1 11. If this information will be
specified by appropriate test description techniques, it can
be used during the test generation phase, too.

It can be concluded that in all different areas, there is a
need to close the gap between a system requirement
specification and its implementation in order to strengthen

180

testability. The UML approach, which combines several
viewpoints (including implementation) in one framework,
seems in particular to be valuable in order to enhance
testability and the confidence in product quality. A UML
test profile is of specific importance to enable the direct
test case. development in the context of UML
specifications.

6 Acknowledgments

The work is partially supported by the European IST
Project Corval2 (IST- 1999-1 1 13 1, Enhanced Techniques
for CORBA Validation, http://www.opengroup.org/
corval2).

We want to thank our project partners for the fruitful
cooperation in Corval2: The Open Group, IONA Tech.,
Fujitsu, Eric Leach Marketing Ltd., and Object
Management Group. Special thanks for their contribution
to the development of the test suite are given to Dr. Uwe
Seimet, Cormac McKenna and John Wigram.

References

B. Baumgarten, H. Wiland: Qualitative notions of
testability. In: A. Petrenko, N. Yevtushenko (eds.):
Testing of communication systems. Kluwer
Academic Publishers, 1997.
B. Baumgarten, 0. Henniger: Testability with
unbounded testing strategies. In: G. Csopaki, S.
Dibuz, K. Tarnay (eds.): Testing of
communicating systems, Kluwer Academic
Publishers, 1999.
AS. Boujawah, K. Saleh: Compiler test case
generation methods: a survey and assessment.
Information and Software Technology 39 (1997)
617 - 625, Elsevier Science B.V. Amsterdam
1997.
R. v. Binder: Testing Object-Oriented systems.
1999.
0. Charles, R. Groz: Basing test coverage on a
formalization of test hypotheses. In: M. Kim, S.
Kang, K. Hong (eds.): Testing of Communicating
systems, Vol. 10, Chapman & Hall, 1997.
R. Gotzhein: Open Distributed Systems. Vieweg
Verlag, Wiesbaden 1993.
G. Holzmann: Design and validation of computer
protocols, Prentice-Hall, London 1991.
H. Konig, A. Ulrich, M. Heiner: Design for
testability: a step-wise approach to protocol
testing. In: M. Kim, S. Kang, K. Hong (eds.):
Testing of Communicating systems, Vol. 10,
Chapman & Hall, 1997.
M. Li, I. Schieferdecker, A. Rennoch: Testing the
TINA Retailer Reference Point.- ISADSP9,

Fourth International Symposium on Autonomous
Decentralized Systems, Tokyo (Japan), 1999.
(describes TCgate).
R. Orfali, D. Harkey, J. Edwards: The essential
clienthewer survival guide. 2nd edition, Wiley
computer publishing, New York 1996.
A. Rennoch, J. de Meer, 1. Schieferdecker: Test
Data Filtering. FBT'99, Munich, June 1999.
J . Rumbaugh, I . Jacobson, G. Booch: The Unified
Modeling Language. Reference Manual. Addison-
Wesley, Reading 1999.
I. Schieferdecker, M. Li, A. Rennoch: Incremental
Testing at System Reference Points. - The IFIP
13th Intern. Conf. on Testing of Communicating
Systems, Ottawa (Canada), Aug. 29 - Sept. 1,
2000.
T. Vassiliou-Gioles, M. Li, 1. Schieferdecker, M.
Born, M. Winkler: Configuration and Execution
Support for Distributed Tests. - IFIP 12th
International Workshop on Testing of
Communicating Systems (IWTCS'99), Budapest
(Hungary), Sept. 1999. (describes TTman)
CORVAL2: Deliverable 1 - Evaluation of the
Existing Concepts and Methods Applicable for
CORBA Validation, Mar. 2000.
CORVAL2: Deliverable 11 - Specification of the
CORBA v2.3 Conformance Test Suite, May 2000.
ISO/IEC 9646-3: Information Technology - Open
Systems Interconnection - Conformance Testing
Methodology and Framework - Part 3: The Tree
and Tabular Combined Notation (TTCN), edition
2, Dec. 1997.
ITU-T Rec. X.901 I ISOIIEC 10746-1: Information
Technology - Open Distributed Processing -
Reference Model: Overview, Aug. 1997.
OMG: The Common Object Request Broker:
Architecture and Specification, v2.3, Jul. 1999.
OMG: Product Profile, CORBA v2.3, psdef/99- 1 1-
01, Nov. 1999.
OMG: CORBA C++ Language Mapping
Specification, v2.3, Jun. 1999.
The Open Group: Assertion Definition Language
(ADL): http://adl.opengroup.org
The Open Group: CORBA Verification Suite
User's Guide, vl . I . 1 , Sep. 1999.
The Open Group: TETware: http://
tetworks.opengroup.org.
TINA Consortium: Object Definition Language
Manual. v2.3, July 1996.

181

http://www.opengroup.org
http://adl.opengroup.org
http://tetworks.opengroup.org

